Wake Field acceleration in an accreting blackhole system: M82 starburst galaxy: possible origin of the northern hot spot

Toshikazu Ebisuzaki and Akira Mizuta (RIKEN) Toshiki Tajima (UC Irvine)

contents

- 1. Star burst galaxy M82 and North hot spot
- 2. Bow wake acceleration
- 3. All sky map
- 4. Future Cosmic-ray Observations
- 5. NS-NS merger and Gravitational Wave
- 6. Conclusion

M82: Nearest Star Burst Galaxy

M82 X-1: 100-10000 Ms BH

Just after the collision with M81

Composite of X-ray, IR, and optical emissions

NASA / CXC / JHU / D. Strickland; optical: NASA / ESA / STSCI / AURA/ Hubble Heritage Team; IR: NASA / JPL-Caltech /Univ. of AZ / C. Engelbracht; inset – NASA / CXC / Tsinghua University / H.Jeng et al.

UC Irvine, Jan. 25-26, 2018

Arrival Direction Map (Auger/TA)

TA Hot Spot: UHECRs from M82?

He, Kusenko, Nagataki + PRD 2016. Energy/Z(EeV) 75 83 92 100 Mrk180 M82 M82 0576 UGC 03957 The most likely Source Position ♦ 135 Arp 148 As a Result of Our Analysis. Mrk 421 M82 is very Close + qalaxy~cluster from the most likely 🗆 staburst galaxy … **Purple Lines are Source Positions** ⊲ BL Lac ∆ radio galaxy **Source Position!** With 1,2,3-sigma Errors. ♦ star—forming galaxy $\overline{P}/P_{\rm bes-fit}$ Source Name Source Type Distance A_1 A_2 (Mpc) 4 ± 17.0 0.4 ± 3.7 CI 100 .

Dest-III	-	_	$1(4i_{1})$	94'00	
M82	starburst galaxy	3.4	17.6	9.6	99.8
UGC 05101	star-forming galaxy	160.2	11.6	9.2	96.9
Mrk 180	blazar	185	19.9	9.3	91.3
UGC 03957	galaxy cluster	150.3	14.9	9.5	67.4
A 0576	galaxy cluster	169.0	17.0	9.4	63.4
Arp 55	star-forming Galaxy	162.7	1.9	9.7	55.3
Arp 148	star-forming Galaxy	143.3	10.5	10.0	41.8
MA442215	blazar	134 vine,	Jan. 15-20 , 2018	9.9	35.6

contents

- 1. Star burst galaxy M82 and North hot spot
- 2. Bow wake acceleration
- 3. All sky map
- 4. Future Cosmic-ray Observations
- 5. NS-NS merger and Gravitational Wave
- 6. Conclusion

Eruption of magnetic field in an accretion disk

A Burst of Torsional Alfven Waves

Tajima and Gilden 1987, ApJ 320, 741-745 Haswell, Tajima, and Sakai, 1992, ApJ, 401, 495-507

cosmic ray acceleration and gamma-ray emission

Nine nearby Fermi AGNs (Sky Map)

UC Irvine, Jan. 25-26, 2018

Light Curves

An AGN-like Jet in M82? X-ray/Radio (flare in 1981)

Xu et al. 2015 ApJ Letters 799, L28

14

contents

- 1. Star burst galaxy M82 and North hot spot
- 2. Bow wake acceleration
- 3. All sky map
- 4. Future Cosmic-ray Observations
- 5. NS-NS merger and Gravitational Wave
- 6. Conclusion

全天Map (TA >57EeV, Auger > 57EeV)

2016/12/09

Astrophysical Implication

- Hot spot component came from M82

 too near for GZK (D=3.4 Mpc)
 mainly proton
- Magnetic deflection?
 - $-B \sim 10 \text{ nG for } D = 3.2 \text{ Mpc}$

•
$$\theta = 0.5^{\circ} \left(\frac{D}{Mpc}\right) \left(\frac{B}{nG}\right) \sim 17.4^{\circ}$$

•
$$\Delta\theta = 0.36 \left(\frac{D}{Mpc}\right)^{1/2} \left(\frac{D_c}{Mpc}\right)^{1/2} \left(\frac{B_r}{nG}\right) \sim 9.4^{\circ}$$

Consistent with Local Supercluster structure

UHECR emission: Beaming?

• Radio galaxies:

Angle to Line of sight $\theta > 10-20^{\circ}$

- -M87 43° : off-axis
- Cen A 50-80° :off-axis
- Blazers: $\theta < 10^{\circ}$
- No information for M82 X-1

 Single jet?
 - \rightarrow θ <10° on-axis

0		7	θ	, ^{, , , , , ,}
		e e e e e e e e e e e e e e e e e e e		

全天Map (TA >57EeV, Auger > 57EeV)

2016/12/09

成里發表会

Background Component: Numerous number of Distant Sources Ebisuzaki and Tajima 2014

Distant Blazers

- Local gamma-ray Luminosity of blazers: $l_{\gamma} = 10^{37} \cdot 10^{38} \text{ erg s}^{-1} \text{ Mpc}^{-3}$ $\Rightarrow \Phi_{\text{UHECR}} \sim 0.1 \text{ particles}/(100 \text{ km}^2 \text{ yr sr})$ GZK (if mainly protons) $\Rightarrow \Phi_{\text{UHE}\nu} \sim 5 \text{ particles}/(100 \text{ km}^2 \text{ yr sr})$ for $E_{\text{UHE}\nu} > 10^{20} \text{ eV}$

contents

- 1. Star burst galaxy M82 and North hot spot
- 2. Bow wake acceleration
- 3. All sky map
- 4. Future Cosmic-ray Observations
- 5. NS-NS merger and Gravitational Wave
- 6. Conclusion

2018/3/15

Science of K-EUSO

- . Study of UHECR fux from space with uniform response
- 2. flux E>3 10¹⁹ eV north & south
- 3. Anysotropy
- 4. Earth observations, bioluminescence
- 5. Debris tracking and removal

K-EUSO exposure

contents

- 1. Star burst galaxy M82 and North hot spot
- 2. Bow wake acceleration
- 3. All sky map
- 4. Future Cosmic-ray Observations
- 5. NS-NS merger and Gravitational Wave
- 6. Conclusion

NS-NS merger/GW burst GW170817

- 1.7 seconds delay in gamma-rays
- Lorentz invariance test: -3×10^{-15} $+7 \times 10^{-16}$

times of speed of light between GW and photons

NS-NS merger \rightarrow BH + Disk

Alfven wave

Conclusions

- M82: the nearest starburst galaxy
 - M82 X-1: Intermediate Mass Blackholes (10²-10⁴ Ms)
 =possible origin of the northern hot spot
- Bow Wake Acceleration
 - Accreting BH+disk+jet
 - = Astronomical Linear Accelerator
 - Bursts of Intense Alfven waves \leftarrow Laser
 - − Jet \leftarrow wave guide
- Bending by magnetic field
 - B \sim 10nG in the cosmic filaments of local supercluster
 - Study of supercluster magnetic field
- K-EUSO
 - Confirmation of south-north anisotropy
 - Identification of M82 and other sources
- GW burst from NS-NS merger: GW170817
 - − BH+accretion disk→Alfven burst of 10^{52} erg/s
 - \rightarrow Central engine of the entire GRB/Hypernova

3-D relativistic MHD simulation see our poster

Back up

Double Donut Schmidt Camera (named by P. Mazzinghi)

Neutrino and gamma ray flux

Taken from Anchordoqui et al. 2014, Phys. Rev. D., 89, 127304 2018/3/15 and Yacobi et al. 2016, Ap. J., 823, 89, modified by TE

GW150914

- Merging of Binary BH: 36Ms+29Ms
- Distance: 410 Mpc=0.410 Gpc (Z=0.09)

Shinkai, kanda, and Ebisuzaki, 2017, ApJ, 835, 276-283.

Jet

Radio/X-ray nots in Cen X-1 Jets

Hardcastle et al. 2003, ApJ 903 160-183

Wolf-Rayet Stars in the Jets? effective CNO supply? ()

How about neutrinos?

Greisen-Zatsepin-Kuz'min Process

Greisen1966; Zatsepin and Kuz'min1966

Relativistic coherence

Extremely relativistic
 →freezing-out

2MASS galaxy distribution

IPAC/Caltech, by Thomas Jarrett - "Large Scale Structure in the Local Universe: 20Th 912 MASS Galaxy Catalog", Jarrett, J. 2004, PASA, 21, 396

Fermi mechanism requires bending→synchrotron loss

Difficulties of Fermi acceleration in UHECR

1. Bending is inevitable

 \rightarrow synchrotron loss

2. Confinement is difficult

 \rightarrow no acceleration

Theoretical Upper limit of Fermi mech.< 10²⁰ eV

Difficulties of Fermi acceleration in UHECR

1. Bending is inevitable

 \rightarrow synchrotron loss

2. Confinement is difficult

 \rightarrow no acceleration

3. Escape problem

→magnetic field does not disappear without adiabatic loss

Wakefield acceleration

1D Particle-in-Cell simulation

with the code by Nagata2008

